368 research outputs found

    Support Vector Machine Analysis of Functional Magnetic Resonance Imaging of Interoception Does Not Reliably Predict Individual Outcomes of Cognitive Behavioral Therapy in Panic Disorder with Agoraphobia

    Get PDF
    Background: The approach to apply multivariate pattern analyses based on neuro imaging data for outcome prediction holds out the prospect to improve therapeutic decisions in mental disorders. Patients suffering from panic disorder with agoraphobia (PD/AG) often exhibit an increased perception of bodily sensations. The purpose of this investigation was to assess whether multivariate classification applied to a functional magnetic resonance imaging (fMRI) interoception paradigm can predict individual responses to cognitive behavioral therapy (CBT) in PD/AG. Methods: This analysis is based on pretreatment fMRI data during an interoceptive challenge from a multicenter trial of the German PANIC-NET. Patients with DSM-IV PD/AG were dichotomized as responders (n = 30) or non-responders (n = 29) based on the primary outcome (Hamilton Anxiety Scale Reduction ≥50%) after 6 weeks of CBT (2 h/week). fMRI parametric maps were used as features for response classification with linear support vector machines (SVM) with or without automated feature selection. Predictive accuracies were assessed using cross validation and permutation testing. The influence of methodological parameters and the predictive ability for specific interoception-related symptom reduction were further evaluated. Results: SVM did not reach sufficient overall predictive accuracies (38.0–54.2%) for anxiety reduction in the primary outcome. In the exploratory analyses, better accuracies (66.7%) were achieved for predicting interoception-specific symptom relief as an alternative outcome domain. Subtle information regarding this alternative response criterion but not the primary outcome was revealed by post hoc univariate comparisons. Conclusion: In contrast to reports on other neurofunctional probes, SVM based on an interoception paradigm was not able to reliably predict individual response to CBT. Results speak against the clinical applicability of this technique

    Potential Impact of Local Anesthetics Inducing Granulocyte Arrest and Altering Immune Functions on Perioperative Outcome

    Get PDF
    Introduction: Local anesthetics (LAs) are frequently used during anesthesia; however, they may influence granulocyte function which in turn could modify immune responses in the perioperative period. Therefore, the aim of this study was to investigate the impact of clinically used doses of bupivacaine and lidocaine on granulocyte function with regard to migration, reactive oxygen species (ROS) production, neutrophil extracellular traps (NETosis) formation, and viability. Methods: A total of 38 granulocyte-enriched samples from healthy subjects were obtained by whole blood lysis. Polymorphonuclear neutrophil (PMN) samples were incubated simultaneously with different concentrations of either bupivacaine (0.03– 3.16 mmol/L) or lidocaine (0.007– 14.21 mmol/L), or without drug (control). Live cell imaging was conducted in order to observe granulocyte chemotaxis, migration, ROS production, and NETosis. Flow cytometry was used to analyze viability and antigen expression. Results: The track length (TL) of PMNs exposed to bupivacaine concentrations of 0.16 mmol/L and above significantly decreased compared to the control. Low concentrations of lidocaine were associated with slight but significant increases in TL, whereas this changed with concentrations above 1.4 mmol/L, showing a significant decrease in TL. PMN incubated with bupivacaine concentrations of 1.58 mmol/L and above or lidocaine concentrations of at least 3.6 mmol/L showed no migration or chemotaxis at all. Time to onset of maximal ROS production and time for half-maximal NETosis decreased in a dose-dependent manner for both substances. Equipotency in NETosis induction was reached by bupivacaine (1.1 mmol/L) at significantly lower concentrations than lidocaine (7.96 mmol/L). Cell viability and oxidative burst were unaffected by LAs. Conclusion: Local anesthetics in clinically used doses ameliorate granulocyte defense mechanisms, thus indicating their potentially decisive effect during the perioperative period

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    Get PDF
    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated tt\mathrm{t}\overline{\mathrm{t}} events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV)

    Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton–proton collisions at 13 TeV

    Get PDF
    info:eu-repo/semantics/publishe

    Evidence for the Higgs boson decay to a bottom quark–antiquark pair

    Get PDF
    info:eu-repo/semantics/publishe

    Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions

    Get PDF
    info:eu-repo/semantics/publishe

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe
    corecore